

Chancery SMS®
Version 6.6 or higher

cTools Client Validation Guide
June 2007

CSL - 12807

Table of Contents
Design Overview.. 1

Setup Process.. 2
Enabling the Data Entry Forms..3
Specifying Client Validation Rule...3
Specifying JavaScript function client validation ...3
Specifying JavaScript code block client validation...4
Defining the Function Name and Specifying its Location...4
Defining the Script code...6
Data Representation..7
Possible Extensions...8
Available Special Functions...9
Specifying the Script Files to Include...10
Defining the Error Message ...10

Allowed Script Code inside an Error Message..11
Compilation Process ... 11

Naming convention for the .js file...12
Compile Errors...13

Run-time Process .. 14

Writing JavaScript code for Client Validation ... 15
Customization Builder Sample Setup ..15
Setting up...17

Sample Script – the manual way...17
The sample Test.js file ..18

Client Validation in Action .. 18
Client Validation by Function Call ..18
Client Validation by Script Block ..20

Calling a Back-End Stored Procedure using JavaScript.................................... 20

Chancery SMS cTools Client Validation Setup Guide

Design Overview
The client validation feature allows users to attach custom validation code to data entry fields using
JavaScript. Also, this feature allows users to validate the value of the data entry field against the
value or values of another data entry fields(s) appearing in the same Web page, which are all defined
in the Customization Builder in cTools.

Chancery SMS supports several data entry controls.

Existing
Controls

Description Supported

Text Box Data entry field for entering alphanumeric information. Yes
Numeric Box Data entry field for entering numeric information. Yes
Date Box Data entry field for entering or selecting date

information.
Yes

Drop-down List Data entry field for selecting an item from the list. Yes
Check Box Data entry for checking or un-checking the item. Yes
List Mover Data entry field for choosing multiple items from a pool

of items.
Yes

Memo Yes
Collection Display several fields. A grid may be for display only

or for editing. Editable fields maybe a Text Box,
Numeric Box, Date Box or Drop-down List. Client
validation will be dependent on each of the editable
fields’ setup.

No

Attachment Data entry field for entering file names for uploading. No
Setup List Pair No
Text Object No

The client validation support is broken into three processes:

• Setup
• Compilation
• Run-time.

1

Chancery SMS cTools Client Validation Setup Guide

Setup Process
The setup supports two ways of specifying the client validation rule: by JavaScript function, or by
JavaScript code block.

The following illustrates the data entry forms for specifying the client validation rule:

• Specifying client validation by specifying the JavaScript function name to use and the location

of the file that contains this function.

• Specifying client validation by entering JavaScript code block.

2

Chancery SMS cTools Client Validation Setup Guide

Enabling the Data Entry Forms
To enable the data entry forms, you will need to edit the web.config file, which you can locate in
the ChancerySMS folder. For example, it may be located in c:\inetpub\wwwroot\ChancerySMS.
Insert the line as shown below:

 <appSettings>
 <add key="TaskSchedulerController.TaskSchedulerMachineName"
value=""/>
 <add key="EligibilityControlRecordsReturnedLimit" value="700"
/>
 <add key="AllowClientValidation" value="true"/> Insert this
line between the appSettings tag
 </appSettings>

This solution is temporary. When the data entry forms are decided to be always available, the line
above will no longer be applicable.

Specifying Client Validation Rule
Users define client validation using the Customization Builder feature. When adding new fields or
editing existing fields, users can specify whether or not to use client validation by turning on the check
box appearing to its left. If client validation is enabled, the user then selects which type of client
validation they want to use.

Users can create a JavaScript file that contains a library of functions that can be used for client
validation, or they can enter the JavaScript code block directly into the Script code field.

Specifying JavaScript function client validation
Below describes that data entry form fields for JavaScript function client validation and shows
examples on how to enter information into each of the fields:

Field name Description Example

Function name Identifies the JavaScript function
to execute when validating.

MyValidator

Script file
location

The location of the JavaScript
file that contains the function.

Scripts/Custom/Custom.js

Script files to
include

Additional JavaScript files to
include that are needed by the
function.

Scripts/Custom/Generic.js;
Scripts/Custom/Strings.js

Error message The error message to display to
the user when the function
returns false.

You need to select 2 or more items.

Validation
option

When checked, the function is
executed during page load.

N/A

3

Chancery SMS cTools Client Validation Setup Guide

Specifying JavaScript code block client validation
Below describes that data entry form fields for JavaScript code block client validation and illustrates
examples on how to enter information into each of the fields:

Field name Description Example

Script code Essentially, the body of a
function. It returns true if
validation is successful;
otherwise, return false.

return (value.length < 2);

Script files to
include

Additional JavaScript files to
include that are needed by the
script code.

Scripts/Custom/Generic.js;
Scripts/Custom/Strings.js

Error message The error message to display to
the user when the function
returns false.

You need to select 2 or more items.

Validation
option

When checked, the function is
executed during page load.

N/A

Defining the Function Name and Specifying its Location
If you want to use a JavaScript function as the validator function, you need to follow these rules:

Rule 1: The function MUST declare one parameter. This parameter will contain the value of the field

the client validation is attached to.

Rule 2: The function returns a Boolean value, which is either true or false. If no value is returned,

the function is assumed to return true.

Rule 3: The location of the file containing the function name must be readable (i.e., read-permission

set) by SMS.

Example: MyJSFile.js

function MyValidator1(value)
{
 var num = parseInt(value);

 return (5 < num && num < 10);
}

function MyValidator2(value)
{
 if (value == “${SomeField}”)
 {
 if (value == “NULL”)
 return false;
 }

 return true;
}

4

Chancery SMS cTools Client Validation Setup Guide

Recommendation 1: Name the function parameter value.

Recommendation 2: Place your custom JavaScript files into the Scripts/Custom folder under the

ChancerySMS root folder.

 Knowing that all your custom scripts are located in one location will help ease

re-deployment of Chancery SMS into another computer when necessary.

Below shows the sample directory structure with the Custom folder:

If Recommendation 2 is used, the location of MyJSFile.js, for example, can

be specified either its absolute or relative path as in the following:
• C:\Inetpub\wwwroot\ChancerySMS\Scripts\Custom\MyJSFi

le.js

• Scripts\Custom\MyJSFile.js

5

Chancery SMS cTools Client Validation Setup Guide

Defining the Script code
When defining the script code, you simply code the body of a function. This code will be placed
inside a function block behind the scene using a generated function name. The rules to follow are:

Rule 1: The word value is a keyword and will contain the value associated to the control (see Data

Type of value in the following section).

Rule 2: The script code returns a Boolean value, which is either true or false. If no value is

returned, the function is assumed to return true.

Example:

if (value == “${SomeField}”)
 {
 if (value == “NULL”)
 return false;
}
return true;

“Value” Data Type
To determine how the handle the “value” of value, the table below describes the data type of value.
Examples are provided to illustrate its usage.

Control type Value Example

Text Box String return (value == “Y”);

Numeric Box String function ValidateNumber(value)

{
 var num = parseInt(value);

 return (1 <= num && num <= 10);
}

Date Box String var d = new Date(value);

return (d.getFullYear() < 2000);

Drop-down List String return value == “5000”

 or
return (GetCode(value) == “PR”);

 or
return (GetDisplayText(value) == “Present”);

6

Chancery SMS cTools Client Validation Setup Guide

Control type Value Example

Check Box Boolean function MyValidator(value)

{
 if (value)

 {

 :

 :
 }

 return true;
}

List Mover Array of strings function ValidateList(value)

{

 // code cannot be “PR”
 for (var i = 0; i < value.length; i++)

 {
 if (GetCode(value[i]) == “PR”)

 return false;

 }

 return true;
}

Memo String return (value.length > 500);

Data Representation
Any customization field that belongs to a page can be accessed within another field’s client validation
definition. The fields can be represented by the following:

Notation Description Example
${Database
field name}

Represents the value
of the data entry form
element associated to
this field.

if (${FirstName} == “John”)
{
 :
 :
}

$ID{Database
field name}

Represents the
generated control ID of
the data entry form
element. Use this if
you need to reference
a control on the page
that you want to
manipulate.

var ctrl =
document.getElementById($ID{FirstName});
ctrl.style.color = “red”;

7

Chancery SMS cTools Client Validation Setup Guide

Possible Extensions
The following notation can be used to represent other data representation:

Notation Description Example
@VAL{Schema,
PropertyName,
EntityID}

Represents the static
resolution of the
database field value.
Use this to render the
value of a database field
specified with the
schema, the property
name of the field and
the entity ID of interest.

@VAL{City, Description, 2340}
@VAL{City, Code, 2340}

@RVAL{Schema,
PropertyName,
EntityID}

Represents the dynamic
resolution of the
database field value
using an RPC
mechanism to retrieve
its value. Use this to
retrieve the value of a
database field specified
by the schema and
property name. Note
that this may change as
this usage needs to be
further designed as the
process of data retrieval
is asynchronous.

@RVAL{City, Description, 100}

- returns the city description

@RVAL{SchoolStudent,OwnerObject.Name,
5230}

 - returns the school name the student
belongs to.

8

Chancery SMS cTools Client Validation Setup Guide

Available Special Functions
The following intrinsic functions are readily available for you to use in your client validation code. You
do not need to include any special JavaScript files in order to use them.

Function Purpose Controls

Supported
Sample Usage

GetCode(value) Retrieves
the “code”
associated
to value.
The value is
in this case
is the
internal ID
of the
record. For
example,
the code for
Florida city
is “FL”.

Drop-down
list
List Mover

var code = GetCode(value);

var code =
GetCode(${SomeField});

GetDisplayText(value) Retrieves
the
“description”
associated
to value.
The value in
this case
corresponds
to the
internal ID
of the
information.
For
example,
the
description
or display
text for
Florida is
“Florida”.

Drop-down
list
List Mover

var code = GetDisplayText
(value);

var code = GetDisplayText
(${SomeField});

EnableGridAddMenu(gridID, bEnable)
EnableGridEditMenu(gridID, bEnable)
EnableGridDeleteMenu(gridID, bEnable)
EnableGridSelectAllMenu(gridID,
bEnable)
EnableGridDeselectAllMenu(gridID,
bEnable)
EnableGridViewMenu(gridID, bEnable)

These
functions
allow you to
manipulate
the menu
state of all
the menu
items
associated
to the Grid

Grid var allowEditing =
${AllowEditingFld};

var gridID = $ID{MyGrid};

EnableGridAddMenu(gridID,
allowEditing);

EnableGridEditMenu(gridID,
allowEditing);

EnableGridDeleteMenu(grid,

9

Chancery SMS cTools Client Validation Setup Guide

Function Purpose Controls Sample Usage
Supported

EnableGridChooseColumnsMenu(gridID,
bEnable)

object.
These
menu items
are
generated
along with
this object.

allowEditing);

Specifying the Script Files to Include
The JavaScript files to include are simply files that either the function name or script code requires
because it is calling other JavaScript functions residing in those files. The file names can be specified
in either it absolute or relative path form.

Rule 1: File names must be separated using the semi-colon (;).

Rule 2: The file must be readable by SMS (i.e., SMS has read-permission set).
Example:

Scripts/Custom/Generic.js;
c:/inetpub/wwwroot/ChancerySMS/Scripts/Custom/Custom.js

Defining the Error Message
The error message is the text that will be displayed when the validation function or script code returns
false. The text itself is not sufficient to provide a meaningful message. In order to address this, the
error message may include specific code in it. For example, a List Mover object whose database
field name as it appears in the Customization Builder page is “SelectedGradeLevels” and you may
want to display the error message “You selected 10 items. Select between 2 and 6 only.” In order to
do this, you will write your error message this way:

You selected ${SelectedGradeLevels}.length items. Select between 2 and 6
only.

When the error message is parsed, the ${SelectedGradeLevels}.length will treated as
JavaScript code. Another example is to display the “description” or “display text” of a city list. For
example, you may want to display the error message “You selected Burnaby, which is not allowed”.
The error message you need to enter is this:

You selected GetDisplayText(${CityList}), which is not allowed.

The GetDisplayText(${CityList}) is treated as code and it will be replaced with the actual
value upon the display of the error message.

10

Chancery SMS cTools Client Validation Setup Guide

Allowed Script Code inside an Error Message
The following are supported inside an error message:

• ${token}
• $ID{token}
• GetCode(${token});
• GetDisplayText(${token});

Compilation Process
The compilation occurs once the user clicks on the “Apply Pending Changes” button. When a
JavaScript file or JavaScript code block is processed, a .js file is generated and saved into the
Generated folder. This file will then be referenced by the web pages generated by the Customization
Builder. Since both the JavaScript file and JavaScript code block may contain references to other
database fields within the same Web page, these fields need to be resolved first by parsing them and
replacing them with the appropriate executable code. For example, if a .js file defines this code:

Before:

function SomeFunctionName(value)
{
 return value.length > (${FirstName} + ${LastName}).length;
}

Then, a new .js file will be generated and placed into the Generated folder but with the function above
replaced with this:

After:

function SomeFunctionName(value, ctrlID, __Values, __CtrlIDs, __DBValues)
{
 return value.length > (__Values[0] + __Values[1]).length;
}

If a JavaScript code block is provided, only the body of the function needs to be defined.

Before:

return value.length > (${FirstName} + ${LastName}).length;

The value is treated as a reserved word and it will contain the raw value of the data entry field in
which the code block is associated to. In order to call JavaScript functions in another JavaScript file,
the location of this file needs to be specified in the JavaScript files to include field. The above code
block will then be processed and placed into a function in a .js file as follows:

After:

function Validate{MetaDataColumnView ID}(value, ctrlID, __Values, __CtrlIDs,
__DBValues)
{
 return value.length > (__Values[0] + __Values[1]).length;
}

11

Chancery SMS cTools Client Validation Setup Guide

Where {MetaDataColumnView ID} is the entity ID of the IMetaDataColumnView object. This is to
ensure uniqueness of the function name and establish a naming pattern that can be easily formed
and connected back to the database field to be validated.

The generated JavaScript code is what will be used by cTools. The parameters and descriptions are
listed below:

Parameter Description

value For script block, this is a reserved word. For function names, the value
represents the name used as the parameter. This will contain the value of the
control associated to the client validation (see Data Type of value table).

ctrlID Contains the rendered control ID associated to the client validation.

__Values Contains an array of values for items that uses this notation: ${token}

__CtrlIDs Contains an array of control IDs for items that uses this notation $ID{token}

__DBValues Not presently used

Naming convention for the .js file
Each defined Web page will have a corresponding generated .js file, if required. This .js file will
contain all the script blocks for the page and all the custom .js file that are used within the page. The
name format is as follows:

{MetaDataSchemaViewName}_v{PageScriptVersion}.js

Here are sample generated files:

12

Chancery SMS cTools Client Validation Setup Guide

Compile Errors
When compilation error occurs, the error messages are logged into a file using this name format:
{MetaDataSchemaViewName}_err.txt and this file will be located in the Scripts/Generated
folder, and then it is presented as a link in the top of the Customization Builder page as shown below:

When you click the link, the content of the file will be displayed:

Once you have resolved the problems, the message and the link to the error log file will disappear. If
you quit SMS and then restart it, the link message will always display as long as the error log file
exists for the page.

13

Chancery SMS cTools Client Validation Setup Guide

Run-time Process
Once the compilation is complete, you will need to restart Chancery SMS. Initially during compilation,
the compiled code are first stored into the CSL_SMS_COMPILED_CODE database table. Once
restarted, the compiled code will be dumped into JavaScript files in the location
{ChancerySMS}\Scripts\Generated folder. Below displays several generated JavaScript files whose
content originated from the database table.

When the web page is rendered, the so-called ‘UIFactory’ creates the UI elements of the web page.
Validator controls are also created as necessary. To support client validation, a new validator called
CslInputClientValidator will be created. This type of validator will be responsible for resolving the
referenced database fields, generating and hooking the call to the JavaScript functions that will
perform the actual validation, and setting up the error message to display when the validation fails.
Since the validator control will be based on .NET’s BaseValidator, no special coding is necessary to
attach this validation to the main JavaScript validator function that is part of the .NET framework.

14

Chancery SMS cTools Client Validation Setup Guide

Writing JavaScript code for Client Validation
Customization Builder Sample Setup

Navigate to: District Setup > Customization Builder > School Setup

Then, navigate to Add/Edit Building:

15

Chancery SMS cTools Client Validation Setup Guide

Navigate to CB Panel 1

Above shows the data fields for CB Panel 1. The validation will be hooked to Alpha One and Numeric
Nine Two fields. This is done in the Setting up section. Note that the id 5222 happens to correspond
to Alpha One and 5223 to Numeric Nine Two fields in my database.

The above shows the page to edit the Alpha One data field. In order to reference this data field in
your JavaScript, you need to use the Database field name, for example, ${AlphaOne}. This example
will return you the value entered by the user. To get the reference to the control itself, use
$ID{AlphaOne}. Take a look at the Test.js in the next section to get an idea how to manipulate
controls in a Web page.

16

Chancery SMS cTools Client Validation Setup Guide

The following diagram illustrates the Numeric Nine Two data field:

Setting up

 Sample Script – the manual way

-- Example 1: Client validation type is by function call.

UPDATE
 CSL_SMS_WORKING_ELEMENT
SET
 CLIENT_VALIDATION_TYPE = 2,
 SCRIPT_FILE_LOCATION =
'c:\inetpub\wwwroot\sms631\chancerysms\Scripts\Custom\Test.js', -- Must be full
path
 SCRIPT_FUNCTION_NAME = 'MyTestValidator',
 VALIDATION_ERROR_MESSAGE = 'The value ${AlphaOne} must not be X.'
WHERE
 ID_SMS_WORKING_ELEMENT = 5222

-- Example 2: Client validation type is by script block

UPDATE
 CSL_SMS_WORKING_ELEMENT
SET
 CLIENT_VALIDATION_TYPE = 1,
 SCRIPT_BLOCK = 'var val = ${NumericNineTwo}; if (val.length > 0 &&
parseInt(val) == 3) { return false; } else { return true; }',
 VALIDATION_ERROR_MESSAGE = 'The value of AlphaOne is ''${AlphaOne}'' and
NumericNineTwo is ''${NumericNineTwo}''.'
WHERE
 ID_SMS_WORKING_ELEMENT = 5223

17

Chancery SMS cTools Client Validation Setup Guide

Notice that in Example 2, the script code references another data field belonging to the same CB
page. You can reference any data fields in CB as long as they are all part of the CB page.

The sample Test.js file
In the sample code above, this JavaScript file is located in
c:\inetpub\wwwroot\sms631\chancerysms\Scripts\Custom\Test.js.

function MyTestValidator(value)
{
 var ctrlID = $ID{AlphaOne};

 var objCtrl = document.getElementById(ctrlID);

 if (${AlphaOne} != "X")
 {
 objCtrl.style.backgroundColor = "palegreen";
 return true;
 }
 else
 {
 objCtrl.style.backgroundColor = "tomato";
 return false;
 }
}

Client Validation in Action
Client Validation by Function Call

When users enter a valid value as validated according to the validator function provided, you will get
this result:

18

Chancery SMS cTools Client Validation Setup Guide

When users enter “X” in the Alpha One field, the validation error message displays as illustrated:

19

Chancery SMS cTools Client Validation Setup Guide

Client Validation by Script Block
If users type “3” in the Numeric Nine Two field, the validation error message appears below;
otherwise, no message box appears.

Calling a Back-End Stored Procedure using JavaScript
As an enhancement to the JavaScript validation feature stated in this document, you now have the
ability to call a back-end stored procedure inside the JavaScript block. The main purpose is to allow
the execution of more complex business rules available at the server side (in the form of stored
procedures), and then update the UI items based on the values returned by those business rules. For
instance, the programmer can decide to disable, update or even hide a particular UI Item depending
on what value is returned from the stored procedure. This feature is particularly useful for clients who
have complex customization requirements to their UI pages which implementation are not possible
through the cTools feature itself.

Here is how it works:

Call the JavaScript function named ‘ExecuteStorProc’ (see signature below) located in the generic.js
file.

function ExecuteStorProc((string)storProcName, (string)handler, (string) handlerParams)

The ExecuteStorProc function takes the following 3 parameters and doesn’t return any value.

storProcName – the name of the stored procedure to call. If the stored procedure takes parameters,
their names and values need to be appended to the stored procedure name itself and delimited by
the ‘~’ character. Example: storprocName~para1Name~para1Value~para2Name~para2Value…
handler – the name of the JavaScript function that receives the returned value from the stored
procedure. This is needed as the call to the stored procedure is done asynchronously and requires a
handler (in the form of a JavaScript function) to capture the results from the stored procedure on
completion.
handlerParams – this parameter is optional and is used if additional values (other than the ones
returned from the stored procedure) are required to be sent to the handler. A good example would be
the id of the UI control to be updated with the value returned by the stored procedure.

20

Chancery SMS cTools Client Validation Setup Guide

Examples:

With no parameters:
ExecuteStorProc("StorProcName", "handler", "handlerParams")

With one parameter:
ExecuteStorProc("StorProcName~ParameterName~ParameterValue", "handler",
"handlerParams")

With multiple parameters:
ExecuteStorProc("StorProcName~ParameterName1~ParameterValue1~ParameterName
2~ParameterValue2...", "handler", "handlerParams")

As mentioned above, when the stored procedure completes its execution it will call the specified
handler function. The handler function needs to have the following signature:

function [handlerFunctionName]((object)returnedValue, (object)handlerParams)

returnedValue – The value returned from the stored procedure. The returned value will be in the
form of an array if the stored procedure is to return a collection of data.
handlerParams – The handlerParams value passed to the ExecuteStorProc function.

21

	Design Overview
	Supported

	Setup Process
	Enabling the Data Entry Forms
	Specifying Client Validation Rule
	Specifying JavaScript function client validation
	Specifying JavaScript code block client validation
	Defining the Function Name and Specifying its Location
	Defining the Script code
	“Value” Data Type

	Data Representation
	Possible Extensions
	Available Special Functions
	Specifying the Script Files to Include
	Defining the Error Message
	Allowed Script Code inside an Error Message

	Compilation Process
	Naming convention for the .js file
	Compile Errors

	Run-time Process
	Writing JavaScript code for Client Validation
	Customization Builder Sample Setup
	Setting up
	 Sample Script – the manual way
	The sample Test.js file

	Client Validation in Action
	Client Validation by Function Call
	Client Validation by Script Block

	Calling a Back-End Stored Procedure using JavaScript

